我们表明,具有“低稳定器复杂性”的量子状态可以有效地与HAAR随机区分开。具体而言,给定$ n $ qubit的纯状态$ | \ psi \ rangle $,我们给出了一种有效的算法,以区分$ | \ psi \ rangle $是(i)haar-random或(ii)具有稳定器保真度的状态至少$ \ frac {1} {k} $(即,具有一些稳定器状态的保真度至少$ \ frac {1} {k} $),保证就是其中之一。使用Black-box访问$ | \ psi \ rangle $,我们的算法使用$ o \!\ left(k^{12} \ log(1/\ delta)\ right)$ copies $ | \ psi \ rangle $和$ o \!\ left(n k^{12} \ log(1/\ delta)\ right)$ $时间以概率至少$ 1- \ delta $成功,并且随着访问状态准备统一,以$ | | \ psi \ rangle $(及其倒数),$ o \!\ left(k^{3} \ log(1/\ delta)\ right)$ queries和$ o \!\! log(1/\ delta)\ right)$时间就足够了。作为推论,我们证明$ \ omega(\ log(n))$ $ t $ - 盖特对于任何Clifford+$ t $ circile都是必不可少的,以准备计算上的pseudorandom Quantum Quantum state,这是一种首要的下限。
translated by 谷歌翻译
经典的阴影协议,最近由黄,Kueng和Preskill [Nat。物理。 16,1050(2020)]是一种量子古典方案,用于估计未知量子状​​态的性质。与完整的量子状态断层扫描不同,该协议可以在近期量子硬件上实施,并且需要很少的量子测量来以很高的成功概率做出许多预测。在本文中,我们研究噪声对经典阴影协议的影响。特别是,我们考虑了该方案中涉及的量子电路受到各种已知噪声通道的影响,并根据局部和全局噪声的阴影静音分析得出样本复杂性的分析上限。此外,通过修改无噪声协议的经典后处理步骤,我们定义了一个新的估计器,该估计量在存在噪声的情况下保持公正。作为应用,我们表明我们的结果可用于在去极化噪声和振幅阻尼的情况下证明严格的样品复杂性上限。
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
This work investigates unsupervised learning of representations by maximizing mutual information between an input and the output of a deep neural network encoder. Importantly, we show that structure matters: incorporating knowledge about locality in the input into the objective can significantly improve a representation's suitability for downstream tasks. We further control characteristics of the representation by matching to a prior distribution adversarially. Our method, which we call Deep InfoMax (DIM), outperforms a number of popular unsupervised learning methods and compares favorably with fully-supervised learning on several classification tasks in with some standard architectures. DIM opens new avenues for unsupervised learning of representations and is an important step towards flexible formulations of representation learning objectives for specific end-goals.
translated by 谷歌翻译